
Cartouche Documentation
Release 1.1.2

Robert Smallshire

Sep 27, 2017

Contents

1 Installing cartouche 3

2 Overview 5

3 Functions and Methods 7
3.1 A typical docstring . 7
3.2 Args . 9
3.3 Return and Returns . 10
3.4 Yield and Yields . 10
3.5 Raises . 11
3.6 Usage . 11

4 Classes and Attributes 13

5 cartouche API 15

6 Frequently Asked Questions 17
6.1 Where does the name cartouche come from? . 17
6.2 Didn’t this project used to be called hieroglyph? . 17

7 Version 1.1.2 19

8 Version 1.1 21

9 Version 1.0 23

10 Version 0.9 25

11 Indices and tables 27

i

ii

Cartouche Documentation, Release 1.1.2

Cartouche is a Sphinx extension for transforming easy-to-read docstrings into the reStructuredText consumed by
Sphinx.

Contents:

Contents 1

Cartouche Documentation, Release 1.1.2

2 Contents

CHAPTER 1

Installing cartouche

cartouche is available on the Python Package Index (PyPI) and can be installed with easy_install so long as
you have setuptools installed already:

$ easy_install cartouche

Alternatively, you can download and unpack the source distribution from the from PyPI and a GZipped tarball. You
should then unpack the source distribution into a temporary directory and run the setup script which will install
cartouche into the current Python environment, for example:

$ tar xzf cartouche-1.1.2.tar.gz
$ cd cartouche-1.1.2
$ python setup.py install

Finally, you can get the source direct from the repository on Github.

3

https://pypi.python.org/pypi/cartouche
http://pypi.python.org/pypi/setuptools/
https://github.com/rob-smallshire/cartouche

Cartouche Documentation, Release 1.1.2

4 Chapter 1. Installing cartouche

CHAPTER 2

Overview

Cartouche was motivated by a desire to support docstrings in a style compatible with that in the Google Python Style
Guide. Currently function and method docstrings in the Google style are supported, although it is planned to add
support for class docstrings in a future release.

The syntax supported by Cartouche goes some way beyond that described informally in the Google Style Guide,
although I have attempted to remain compatible with the Google guide.

The main benefit of this simple and highly readable docstring format over the native reStructuredText Sphinx format
is that it retains its readability when used with the help() function in the Python REPL, or when presented by IDEs.

5

http://google-styleguide.googlecode.com/svn/trunk/pyguide.html#Comments
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html#Comments

Cartouche Documentation, Release 1.1.2

6 Chapter 2. Overview

CHAPTER 3

Functions and Methods

Function or method docstrings may contain any text, however, text introduced by block headings will be treated
specially during processing of the docstring and converted into reStructuredText equivalents before being passed along
to Sphinx for rendering.

The special blocks currently recognised by Cartouche are Args:, Returns:, Yields:, Raises:, Note: and
Warning:. The order of the blocks is not significant, although most function docstrings will consist of a preamble
followed by Args:, Returns: and Raises: in that order.

A typical docstring

Let’s start by showing a complete and typical docstring. This one is taken from the open source asq project which uses
Cartouche for it’s docstrings:

def select(self, selector):
'''Transforms each element of a sequence into a new form.

Each element of the source is transformed through a selector function
to produce a corresponding element in teh result sequence.

If the selector is identity the method will return self.

Note: This method uses deferred execution.

Args:
selector: A unary function mapping a value in the source sequence

to the corresponding value in the generated generated sequence.
The single positional argument to the selector function is the
element value. The return value of the selector function
should be the corresponding element of the result sequence.

Returns:
A Queryable over generated sequence whose elements are the result
of invoking the selector function on each element of the source

7

http://code.google.com/p/asq/

Cartouche Documentation, Release 1.1.2

sequence.

Raises:
ValueError: If this Queryable has been closed.
TypeError: If selector is not callable.

'''

This docstring consists of a arbitrarily structured preamble. The first Cartouche feature is the Note: block. Here
the note content has been included on one line, although the note content may extend over several lines if approriate
indentation is used. Indentation in Cartouche docstrings can be of any size, but must be consistent, since the indentation
is used to extract structure - much like Python code itself. The body of a paragraph such as a Note: can either start on
the same line as the heading after the colo— which is useful for short notes—or can start on the next line if indented.

The second Cartouche heading is Args: which introduces an argument list. Each named argument have its own
heading followed by a colon followed by one or more lines of description. Again, the description can start on the same
line or be indented on the following line. There is no need to use blank lines between arguments - indentation alone is
used to extract the structure.

The third Cartouche heading is Returns: which may also be spelt Return:. In this example, the author has chosen
to start the paragraph on the indented next line.

The final Cartouche heading is Raises: This is followed by a list of paragraphs each introduced by a heading which
is the exception type.

This docstring, when processed by Cartouche will result in the following reStructuredText markup:

Transforms each element of a sequence into a new form.

Each element of the source is transformed through a selector function
to produce a corresponding element in teh result sequence.

If the selector is identity the method will return self.

.. note::

This method uses deferred execution.

:param selector: A unary function mapping a value in the source sequence
to the corresponding value in the generated generated sequence.
The single positional argument to the selector function is the
element value. The return value of the selector function
should be the corresponding element of the result sequence.

:returns: A Queryable over generated sequence whose elements are the result
of invoking the selector function on each element of the source
sequence.

:raises:

* ValueError - If this Queryable has been closed.

* TypeError - If selector is not callable.

This in turn will be rendered by Sphinx into HTML like this:

8 Chapter 3. Functions and Methods

Cartouche Documentation, Release 1.1.2

Now we look at each heading in detail and the syntax it supports:

Args

The Args: heading is for specification of function arguments. Each argument must be described by its own indented
paragraph introduced by a colon terminated heading which is the name of the argument. The descriptive text for the
argument can begin either on the same line as the argument name or indented on subsequent lines. The following are
examples are legitimate Args: blocks:

Args:
spline: A cubic SplineCurve containing at least three points.
curvature: A float value between 0.0 and 1.0.
color: An RGB tuple.

or:

Args:
spline:

A cubic SplineCurve containing at least three points.

curvature:
A float value between 0.0 and 1.0.

color:
An RGB tuple.

or:

Args:
spline: A cubic SplineCurve containing at least three points. Longer

descriptions which wrap beyond one line can either be started on
the same line as the parameter name, like this one.

curvature:
A float value between 0.0 and 1.0. Or could be started on the next
line provided a suitable indent is given.

color: An RGB tuple. Blank lines between arguments are optional.

3.2. Args 9

Cartouche Documentation, Release 1.1.2

For so-called varargs syntax in Python which allow receiving arbitrary positional and keyword arguments as a tuple or
dictionary respectively, simply prefix the argument name with * or ** as you would in Python code. For example:

Args:

*args: A tuple of positional arguments.

**kwargs: A dictionary of named arguments.

Optionally, you may provide a type for the argument in parentheses between the argument name and the colon. The
type can be any text and does not need to correspond to an actual Python type:

Args:
spline (SplineCurve): A cubic SplineCurve containing at least three

points.

curvature (float): A value between 0.0 and 1.0.

color (tuple of integers): An RGB tuple with values in the range 0-255.

It’s possible to use almost any reStructuredText or Sphinx formatting in combination with Cartouche in the body text.

Return and Returns

The Returns: heading which can also be spelled Return: is for the specification of return values. There is no
specific syntax for describing the return type, which you should typically mention in the body text. The description
can begin on the same line at the heading or indented on subsequent lines. Both of the following are valid:

Returns: A short description on the same line as the heading.

or:

Returns:
A longer description which starts on the next line indented one level.
It's a little awkward to make up documentation like this when you have
nothing to say.

or combined:

Returns: There's nothing to stop you starting a multi-line description like
this one the same line as the heading, so long as you indent subsequent
lines in the paragraph, like this.

If the function you are documenting is a generator, prefer to use Yields: rather than Return: - see below.

Yield and Yields

The Yields: heading, which can also be spelled Yield: is for the specification of the sequence of values returned
by a generator. When documenting a generator, prefer to use Yields: over Returns:. Note that Cartouche will
not verify that the function being documented is actually a generator. he description can begin on the same line at the
heading or indented on subsequent lines. Both of the following are valid:

Yields: A short description on the same line as the heading.

10 Chapter 3. Functions and Methods

Cartouche Documentation, Release 1.1.2

or:

Yields:
A longer description which starts on the next line indented one level.
It's a little awkward to make up documentation like this when you have
nothing to say.

or combined:

Yields: There's nothing to stop you starting a multi-line description like
this one the same line as the heading, so long as you indent subsequent
lines in the paragraph, like this.

Raises

The Raises: heading is used to specify exception types which can be raised by the function. The heading is
followed, on subsequent indented paragraphs by further sections each of which details a single exception type. The
paragraph for each exception type is introduced by a heading which is the exception type itself. For example, given a
function which raises two distinct exception types, the following formats are acceptable:

Raises:
TypeError: A short description for a TypeError.
ValueError: A short description for a ValueError.

or:

Raises:
TypeError: A multi-line description for a TypeError which begins on the

same line as the heading which introduced the type error. Subsequent
lines must be indented.

Usage

The Usage: heading is used to provide a code sample. The entire content of the block, as determined by indentation,
is interpreted as Python code and formatting accordingly:

Usage:

for i in range(100):
print(i)

3.5. Raises 11

Cartouche Documentation, Release 1.1.2

12 Chapter 3. Functions and Methods

CHAPTER 4

Classes and Attributes

Class docstrings support an Attributes: block where instance attributes of objects of that class may be listed.

The attributes block is simular to the Args: block. List each attribute by name separated from its description by a
colon. You can optionally include the attribute type in parentheses between the name and the colon.

Here’s an example class docstring:

class Example
"""The example docstring for the Example class.

Within this class docstring we can both describe the class, but also use
an attributes heading to list the attributes we expect the instances of
the class to have. There is no specific provision for distinguishing
between class attributes and instance attributes at this point, so you
should make that distinction clear in your descriptions.

Attributes:
fred: This attribute description just runs to a single line.
shiela: This attribute description is somewhat longer and spans

multiple lines. Subsequent lines are indented one further level.
jim (int): As with function or method docstrings you can optionally

provide a type in parentheses after the attribute name and before
the colon which separates the name from the description.

harry: With longer attribute descriptions it can help to separate the
attributes with blank lines. This takes up more room in the
source code but is much easier to read when using the help()
function.

"""
pass

13

Cartouche Documentation, Release 1.1.2

14 Chapter 4. Classes and Attributes

CHAPTER 5

cartouche API

Forthcoming...

15

Cartouche Documentation, Release 1.1.2

16 Chapter 5. cartouche API

CHAPTER 6

Frequently Asked Questions

Where does the name cartouche come from?

A cartouche is a symbol used in Egyptian hieroglyphs to indicate that the enclosed text is a royal name*0. Since
cartouche is a plugin to the Sphinx Python documentation generator, a name with a suitably Egyptian theme was
selected. The connection to hieroglyphs is significant, because regular Sphinx docstrings can be dense with symbols,
making them hard to read in plain text. Ironic, since the motivation behind reStructuredText was that is should be an
“easy-to-read, what-you-see-is-what-you-get plaintext markup syntax”.

Didn’t this project used to be called hieroglyph?

Yes. Unfortunately, somebody too lazy to do a quick Google search for “Sphinx extension hieroglyph” beat me to an
upload to the Python Package Index, thereby securing the name for their own project. C’est la vie. Que sera sera.

0 See the Wikipedia article on cartouches for more details.

17

http://sphinx.pocoo.org/
http://docutils.sourceforge.net/rst.html
http://en.wikipedia.org/wiki/Cartouche

Cartouche Documentation, Release 1.1.2

18 Chapter 6. Frequently Asked Questions

CHAPTER 7

Version 1.1.2

• Fixes broken support for Python 2

19

Cartouche Documentation, Release 1.1.2

20 Chapter 7. Version 1.1.2

CHAPTER 8

Version 1.1

• Adds support for instance attributes in the class docstring using an Attributes block.

• Adds support for code samples in docstrings with Usage block.

21

Cartouche Documentation, Release 1.1.2

22 Chapter 8. Version 1.1

CHAPTER 9

Version 1.0

• Fix for issue #13: bail out of setup function if called by nose

• Fix for issue #10: chicken/egg issue on importing version number in setup...

• Fix for Issue #8, dots in type specifier

• Moved project to GitHub

23

Cartouche Documentation, Release 1.1.2

24 Chapter 9. Version 1.0

CHAPTER 10

Version 0.9

• Changed the project name from Cartouche from Hieroglyph to avoid a naming clash.

• Ensured Python 3 compatibility

• Added support for Yields blocks.

25

Cartouche Documentation, Release 1.1.2

26 Chapter 10. Version 0.9

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

27

	Installing cartouche
	Overview
	Functions and Methods
	A typical docstring
	Args
	Return and Returns
	Yield and Yields
	Raises
	Usage

	Classes and Attributes
	cartouche API
	Frequently Asked Questions
	Where does the name cartouche come from?
	Didn't this project used to be called hieroglyph?

	Version 1.1.2
	Version 1.1
	Version 1.0
	Version 0.9
	Indices and tables

