

Welcome to Cartouche

Cartouche is a Sphinx extension for transforming easy-to-read docstrings into
the reStructuredText consumed by Sphinx.

Contents:

	Installing cartouche

	Overview

	Functions and Methods
	A typical docstring

	Args

	Return and Returns

	Yield and Yields

	Raises

	cartouche API

	Frequently Asked Questions
	Where does the name cartouche come from?

	Didn’t this project used to be called hieroglyph?

	Version 0.9

Indices and tables

	Index

	Module Index

	Search Page

Installing cartouche

cartouche is available on the Python Package Index [http://pypi.python.org/pypi/asq/] (PyPI) and can be
installed with easy_install so long as you have setuptools [http://pypi.python.org/pypi/setuptools/] installed
already:

$ easy_install cartouche

Alternatively, you can download and unpack the source distribution from the
cartouche downloads page [http://code.google.com/p/cartouche/downloads/list] or PyPI. You should then unpack the source
distribution into a temporary directory and run the setup script which will
install cartouche into the current Python environment, for example:

$ tar xzf cartouche-0.9.tar.gz
$ cd cartouche-0.9
$ python setup.py install

Overview

Cartouche was motivated by a desire to support docstrings in a style
compatible with that in the Google Python Style Guide [http://google-styleguide.googlecode.com/svn/trunk/pyguide.html#Comments]. Currently function
and method docstrings in the Google style are supported, although it is planned
to add support for class docstrings in a future release.

The syntax supported by Cartouche goes some way beyond that described
informally in the Google Style Guide, although I have attempted to remain
compatible with the Google guide.

The main benefit of this simple and highly readable docstring format over the
native reStructuredText Sphinx format is that it retains its readability when
used with the help() function in the Python REPL, or when presented by
IDEs.

Functions and Methods

Function or method docstrings may contain any text, however, text introduced by
block headings will be treated specially during processing of the docstring and
converted into reStructuredText equivalents before being passed along to Sphinx
for rendering.

The special blocks currently recognised by Cartouche are Args:,
Returns:, Yields:, Raises:, Note: and Warning:. The order
of the blocks is not significant, although most function docstrings will
consist of a preamble followed by Args:, Returns: and Raises: in
that order.

A typical docstring

Let’s start by showing a complete and typical docstring. This one is taken
from the open source asq [http://code.google.com/p/asq/] project which uses Cartouche for it’s docstrings:

def select(self, selector):
 '''Transforms each element of a sequence into a new form.

 Each element of the source is transformed through a selector function
 to produce a corresponding element in teh result sequence.

 If the selector is identity the method will return self.

 Note: This method uses deferred execution.

 Args:
 selector: A unary function mapping a value in the source sequence
 to the corresponding value in the generated generated sequence.
 The single positional argument to the selector function is the
 element value. The return value of the selector function
 should be the corresponding element of the result sequence.

 Returns:
 A Queryable over generated sequence whose elements are the result
 of invoking the selector function on each element of the source
 sequence.

 Raises:
 ValueError: If this Queryable has been closed.
 TypeError: If selector is not callable.
 '''

This docstring consists of a arbitrarily structured preamble. The first
Cartouche feature is the Note: block. Here the note content has been
included on one line, although the note content may extend over several lines
if approriate indentation is used. Indentation in Cartouche docstrings can be
of any size, but must be consistent, since the indentation is used to extract
structure - much like Python code itself. The body of a paragraph such as a
Note: can either start on the same line as the heading after the colo—
which is useful for short notes—or can start on the next line if indented.

The second Cartouche heading is Args: which introduces an argument list.
Each named argument have its own heading followed by a colon followed by one
or more lines of description. Again, the description can start on the same
line or be indented on the following line. There is no need to use blank lines
between arguments - indentation alone is used to extract the structure.

The third Cartouche heading is Returns: which may also be spelt
Return:. In this example, the author has chosen to start the paragraph on
the indented next line.

The final Cartouche heading is Raises: This is followed by a list of
paragraphs each introduced by a heading which is the exception type.

This docstring, when processed by Cartouche will result in the following
reStructuredText markup:

Transforms each element of a sequence into a new form.

Each element of the source is transformed through a selector function
to produce a corresponding element in teh result sequence.

If the selector is identity the method will return self.

.. note::

 This method uses deferred execution.

:param selector: A unary function mapping a value in the source sequence
 to the corresponding value in the generated generated sequence.
 The single positional argument to the selector function is the
 element value. The return value of the selector function
 should be the corresponding element of the result sequence.

:returns: A Queryable over generated sequence whose elements are the result
 of invoking the selector function on each element of the source
 sequence.

:raises:
 * ValueError - If this Queryable has been closed.

 * TypeError - If selector is not callable.

This in turn will be rendered by Sphinx into HTML like this:

[image: _images/select_html.png]
Now we look at each heading in detail and the syntax it supports:

Args

The Args: heading is for specification of function arguments. Each
argument must be described by its own indented paragraph introduced by a colon
terminated heading which is the name of the argument. The descriptive text for
the argument can begin either on the same line as the argument name or
indented on subsequent lines. The following are examples are legitimate
Args: blocks:

Args:
 spline: A cubic SplineCurve containing at least three points.
 curvature: A float value between 0.0 and 1.0.
 color: An RGB tuple.

or:

Args:
 spline:
 A cubic SplineCurve containing at least three points.

 curvature:
 A float value between 0.0 and 1.0.

 color:
 An RGB tuple.

or:

Args:
 spline: A cubic SplineCurve containing at least three points. Longer
 descriptions which wrap beyond one line can either be started on
 the same line as the parameter name, like this one.
 curvature:
 A float value between 0.0 and 1.0. Or could be started on the next
 line provided a suitable indent is given.

 color: An RGB tuple. Blank lines between arguments are optional.

For so-called varargs syntax in Python which allow receiving arbitrary
positional and keyword arguments as a tuple or dictionary respectively, simply
prefix the argument name with * or ** as you would in Python code.
For example:

Args:
 *args: A tuple of positional arguments.

 **kwargs: A dictionary of named arguments.

Optionally, you may provide a type for the argument in parentheses between
the argument name and the colon. The type can be any text and does not need
to correspond to an actual Python type:

Args:
 spline (SplineCurve): A cubic SplineCurve containing at least three
 points.

 curvature (float): A value between 0.0 and 1.0.

 color (tuple of integers): An RGB tuple with values in the range 0-255.

It’s possible to use almost any reStructuredText or Sphinx formatting in
combination with Cartouche in the body text.

Return and Returns

The Returns: heading which can also be spelled Return: is for the
specification of return values. There is no specific syntax for describing the
return type, which you should typically mention in the body text. The
description can begin on the same line at the heading or indented on
subsequent lines. Both of the following are valid:

Returns: A short description on the same line as the heading.

or:

Returns:
 A longer description which starts on the next line indented one level.
 It's a little awkward to make up documentation like this when you have
 nothing to say.

or combined:

Returns: There's nothing to stop you starting a multi-line description like
 this one the same line as the heading, so long as you indent subsequent
 lines in the paragraph, like this.

If the function you are documenting is a generator, prefer to use Yields:
rather than Return: - see below.

Yield and Yields

The Yields: heading, which can also be spelled Yield: is for the
specification of the sequence of values returned by a generator. When
documenting a generator, prefer to use Yields: over Returns:. Note
that Cartouche will not verify that the function being documented is
actually a generator. he
description can begin on the same line at the heading or indented on
subsequent lines. Both of the following are valid:

Yields: A short description on the same line as the heading.

or:

Yields:
 A longer description which starts on the next line indented one level.
 It's a little awkward to make up documentation like this when you have
 nothing to say.

or combined:

Yields: There's nothing to stop you starting a multi-line description like
 this one the same line as the heading, so long as you indent subsequent
 lines in the paragraph, like this.

Raises

The Raises: heading is used to specify exception types which can be
raised by the function. The heading is followed, on subsequent indented
paragraphs by further sections each of which details a single exception type.
The paragraph for each exception type is introduced by a heading which is the
exception type itself. For example, given a function which raises two distinct
exception types, the following formats are acceptable:

Raises:
 TypeError: A short description for a TypeError.
 ValueError: A short description for a ValueError.

or:

Raises:
 TypeError: A multi-line description for a TypeError which begins on the
 same line as the heading which introduced the type error. Subsequent
 lines must be indented.

cartouche API

Forthcoming...

Frequently Asked Questions

Where does the name cartouche come from?

A cartouche is a symbol used in Egyptian hieroglyphs to indicate that the enclosed text is a royal name [*]. Since
cartouche is a plugin to the Sphinx [http://sphinx.pocoo.org/] Python documentation generator, a name with a
suitably Egyptian theme was selected. The connection to hieroglyphs is significant, because regular Sphinx docstrings
can be dense with symbols, making them hard to read in plain text. Ironic, since the motivation behind reStructuredText [http://docutils.sourceforge.net/rst.html] was that is should be an “easy-to-read, what-you-see-is-what-you-get
plaintext markup syntax”.

Didn’t this project used to be called hieroglyph?

Yes. Unfortunately, somebody too lazy to do a quick Google search for “Sphinx extension hieroglyph” beat me to an
upload to the Python Package Index, thereby securing the name for their own project. C’est la vie. Que sera sera.

	[*]	See the Wikipedia article on cartouches [http://en.wikipedia.org/wiki/Cartouche] for more details.

Version 0.9

	Changed the project name from Cartouche from Hieroglyph to avoid a naming clash.

	Ensured Python 3 compatibility

	Added support for Yields blocks.

Index

 _static/comment-close.png

_static/comment.png

_static/down.png

_static/cartouche_76x53.png

_static/select_html.png
Transforms each element of a sequence into a new form.

Each element is transformed through a selector function to produce a value for each value in the source sequence. The generated
sequence is lazily evaluated

Ifthe selector is identity the method will return self.
Note: This method uses deferred execution

Parameters: selector — A unary function mapping a value in the source sequence to the corresponding value in the generated
generated sequence. The single positional argument to the selector function is the element value. The return value of
the selector function should be the corresponding element of the result sequence.

Returns: A Queryable over generated sequence whose elements are the result of invoking the selector function on each
element of the source sequence.
Raises: « ValueEror - If this Queryable has been closed

« TypeError - If selector is not callable.

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/cartouche_217x152.png

nav.xhtml

 Table of Contents

 		Welcome to Cartouche

 		Installing cartouche

 		Overview

 		Functions and Methods

 		A typical docstring

 		Args

 		Return and Returns

 		Yield and Yields

 		Raises

 		cartouche API

 		Frequently Asked Questions

 		Where does the name cartouche come from?

 		Didn't this project used to be called hieroglyph?

 		Version 0.9

_static/cartouche__trans_217x152.png

_static/up-pressed.png

_static/comment-bright.png

_images/select_html.png
Transforms each element of a sequence into a new form.

Each element is transformed through a selector function to produce a value for each value in the source sequence. The generated
sequence is lazily evaluated

Ifthe selector is identity the method will return self.
Note: This method uses deferred execution

Parameters: selector — A unary function mapping a value in the source sequence to the corresponding value in the generated
generated sequence. The single positional argument to the selector function is the element value. The return value of
the selector function should be the corresponding element of the result sequence.

Returns: A Queryable over generated sequence whose elements are the result of invoking the selector function on each
element of the source sequence.
Raises: « ValueEror - If this Queryable has been closed

« TypeError - If selector is not callable.

